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Abstract
The ICAO-standardized Password Authenticated Connection Estab-

lishment (PACE) protocol is used all over the world to secure access to
electronic passports. Key-secrecy of PACE is proven by first modeling
it as an Observational Transition System (OTS) in CafeOBJ, and then
proving invariant properties by induction.

1 Introduction
Cryptographic primitives, such as encryption mechanisms, hash functions or
message authentication codes, undergo the scrutiny of a large community of
researchers. While their mathematical foundations might not yet be under-
stood in full detail, there have been few sudden groundbreaking attacks on
them. Using these primitives as building blocks to construct security protocols
is, however, another difficult challenge. In fact, despite using well-known cryp-
tographic primitives, erroneous protocol specifications and design decisions have
often lead to attacks. A famous example is [16], and the survey [7] contains an
impressive list of failed attempts to design secure protocols. Formally proving
properties of a protocol to exclude subtle attacks is one important step in the
construction of security protocols.

Password Authenticated Connection Establishment (PACE) [4, 13] is a cryp-
tographic protocol used all over the world for electronic passports. PACE es-
tablishes a secure communication channel between a terminal (trying to access
data stored on the passport’s RFID chip) and the passport itself. Ensuring trust
in PACE is of uttermost importance due to several reasons: First, the prede-
cessor of PACE, called Basic Access Control (BAC), is plagued with security
concerns due to low-entropy passwords. Second, the contact-less RFID interface
of electronic passports raises concerns of citizens that passports enable secret
tracking or that criminals may remotely read out sensitive biometric informa-
tion. Third, PACE is used in national id-cards that enable secure authentication
for e-commerce.

∗This is an author’s version without proof reading. The final publication is available at
Springer via http://dx.doi.org/10.1007/978-3-319-17581-2_11
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CafeOBJ is an algebraic specification and programming language [8]. After
specifying a formal model, e.g. of a cryptographic protocol such as PACE,
CafeOBJ can also be used as an interactive theorem prover to show invariant
properties of such a specified model: Mathematical proofs are written as proof
scores, and a proof can be established by executing its proof score. This approach
is used in this paper.

The contribution of this paper is threefold. First, key secrecy of PACE itself
is shown, strengthening trust in the protocol. Second, while CafeOBJ has a
proven track-record in the verification of security protocols [17, 18, 19, 20, 21,
23], the proof serves once more as a case study to show that theorem proving in
CafeOBJ scales well beyond simple academic problems to real-world scenarios.
Third, to the author’s best knowledge, this proof is the first to model a protocol
based on a Diffie-Hellman key-exchange in such detail in CafeOBJ. This might
serve as a foundation for analyzing other DH-based protocols. The source code
of the proof is available at https://github.com/d-klein/ots-proof.

The structure of this paper is as follows: In Section 2, the PACE protocol
is introduced. A very brief recapitulation of modeling OTSs in CafeOBJ, and
proving their invariants is given in Section 3. Section 4 provides an abstract
version of PACE and shows how to model it as an OTS. The proof of key
secrecy of PACE is shown in Section 5. Experiences and learned lessons are
summarized in Section 6, and related work is reviewed in Section 7. Finally,
concluding remarks are given in Section 8.

2 The PACE Key Agreement Protocol
To ensure compatibility with existing document formats and infrastructure, con-
tactless RFID chips were chosen for electronic passports. This introduces two
risks that need to be addressed: Skimming, i.e. an attacker reading out data
from the passport without authorization, and eavesdropping, i.e. intercepting
communication data during transmission. Note that skimming requires an on-
line connection with the passport, whereas eavesdropped data can be analyzed
offline after interception.

To prevent skimming, a terminal accessing data on the passport should prove
that it is authorized to access the data. This can be done by e.g. reading
information printed on the passport by OCR, and sending this data to the chip.
The terminal thus demonstrates that it has physical access to the passport, and
a passport holder can control electronic access to his passport by controlling
physical access. Printed information on the passport often has low entropy.
The machine-readable zone (MRZ) for example can be read by OCR and has
88 digits, but the vast majority of digits are not unique w.r.t. each passport,
or can be easily guessed. Just hashing this printed data to directly derive a
session key does not prevent sufficiently against offline attacks on eavesdropped
transmission data, since the session key is the same for each session, and also
has low entropy. Instead, a strong session key unique to each session is required
to prevent (offline) analysis of eavesdropped transmission data.
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The goal of the PACE key agreement protocol is to establish a secure, authen-
ticated connection with a strong session key between the chip inside a passport
and a corresponding terminal. PACE uses a pre-shared low entropy password
to derive a strong session key by using a Diffie-Hellman key exchange [9]. The
protocol is versatile in the sense that it allows to use either standard multiplica-
tive groups of integers modulo p or groups based on elliptic curves. The latter
is important in practice, since RFID chips have limited processing power.

The protocol works as follows: First, it is assumed that a common low
entropy password π is known both by the chip and the terminal. Depending on
the document type (international travel document, national id-card etc.) and
use-case (border control, e-commerce) three solutions exist in practice: 1.) The
password is derived from the MRZ, 2.) the password is derived from a Card
Access Number (CAN) specifically printed on the document for this purpose or
3.) the password is derived from a secret personal identification number (PIN)
known only to the owner of the document. In all cases, the password is stored on
the chip in a protected way. To read out data on the chip, the MRZ is optically
read by the terminal, or the CAN or the PIN is entered manually.

In the next step, the chip sends both a random nonce s encrypted by a
symmetric cipher with the hash H of π and the domain parameter DPICC for
the group operation to the terminal. Using a mapping function and the domain
parameter, the nonce s is mapped to some generator g of the group 〈g〉. Both
the terminal and the chip chose another nonce x resp. y and compute exponents,
i.e. the group operation is applied with the nonce together with the generator
to derive gx resp. gy. These are then shared, and a key K = (gx)y = (gy)x and
MAC and session-keys are derived. Knowledge of the sent exponents and the
key is verified by exchanging MAC-tokens. See Figure 1 for a brief overview of
the protocol. For more detailed specifications, see [4].

3 OTS, CafeOBJ and Invariant-Proving
The PACE protocol is modeled as an Observational Transition System (OTS).
For precise definitions and an introduction to OTSs, cf. [19]. Here, only a brief
recapitulation on how OTSs are modeled in CafeOBJ is provided in order to
give an intuition of the overall proof approach and proof structure. An OTS
is a triple of a set of observable values, a set of initial states, and a set of
conditional transition rules. A protocol can be modeled as an OTS, where in
each state of the protocol, observations on this state can be made. The effect
of a state change on the observations is described by transitions. An invariant
is a property that holds (is observable) in all states reachable from the initial
ones.

CafeOBJ is based on equational reasoning. Algebraic data types and op-
erations on them are described by conditional rewrite rules. Rewrite rules are
called equations in CafeOBJ, but they are applied directed from left to right.
An OTS is modeled in CafeOBJ as follows:

• The state space is modeled as a hidden sort H.
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Passport Chip (PICC) Terminal (PCD)
shared password π

choose nonce s← Zq
static domain parameter DPICC

z = enc(H(π), s)
DPICC,z−−−−−→

s = dec(H(π), z)
g = map(DPICC, s) g = map(DPICC, s)
choose x← Z∗q choose y ← Z∗q
h1 = gx h2 = gy

h1−→
h2←−

abort, if h2 6∈ 〈g〉 or h1
.= h2 abort, if h2 6∈ 〈g〉 or h2

.= h1

K = hx2 = (gy)x K = hy1 = (gx)y
KMAC = H(K||1) KMAC = H(K||1)
KENC = H(K||2) KENC = H(K||2)
TPICC = mac(KMAC, h2) TPCD = mac(KMAC, h1)

TPICC−−−−→
TPCD←−−−

abort, if TPCD 6= mac(KMAC, h1) abort, if TPICC 6= mac(KMAC, h2)

Figure 1: The PACE protocol.

• A data type D is described in order-sorted algebra with visible sort V .

• An observation is modeled as a CafeOBJ behavioral operator:

bop o : H V1 V2 ... VN -> V

V1,...,VN and V are visible sorts corresponding to data types D1, . . . Dn,
and H is the hidden sort representing the state space. Intuitively, this
equation describes that the observation V can be made in state H, where
H is characterized by V1 ... VN.

• A transition is also modeled as a CafeOBJ behavioral operator:

bop t : H V1 V2 ... VM -> H

The first argument of t refers to the current state. The operator t —
identified by the indices V1 ... VM — maps the current state to another
state in the state space. How this transition operator affects the state
space in particular, is defined in CafeOBJ with conditional equations of
the form:
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ceq o(t(X,Y1,...,YM),Z1,...,ZN) = changeval(X,Y1,...,YM,Z1,...ZN)
if effective-condition(X,Y1,...,YM,Z1,...,ZN) .

ceq t(X,Y1,...,YM) = X
if not effective-condition(X,Y1,...,YM,Z1,...,ZN) .

Here changeval is the operation that changes values of the observation
to the ones of the successor state, and effective-condition evaluates
whether the condition to apply the transition is met in the current state.
If the observed values never change when applying the transition, one can
combine the above simply to:

eq o(t(X,Y1,...,YM),Z1,...,ZN) = o(X,Y1,...,YM).

CafeOBJ uses proof scores to prove invariants that hold in a model that is spec-
ified as described above. Proof scores define the proof obligations and induction
hypothesis needed to proof invariants by induction.

Proof Scores.

A proof score of an invariant consists of two parts: First, the induction hypoth-
esis w.r.t. the predicate in the initial state is shown. Then the induction step
follows. For each invariant predi(s,x) a corresponding operator and an equation
is defined:

op invI : H V1 V2 ... VN -> Bool .
eq invI(S,X1,...,XN) = ... .

In the definitions of visible sorts in the specification, also a constant init is
defined, denoting an arbitrary initial state. Then to prove predi(s,x), one fixes
arbitrary objects v1,...,vN for the visible sorts V1,...,VN and issues a reduce
command w.r.t. the initial state: red invI(init,v1,...,vN).

For the induction step one has to show that if predi(s,x) holds in state s,
then it also holds in any possible next state s′. For each predicate one fixes
arbitrary states s and s′ by ops s,s’ : -> H, defines an operator of form
op istepI : V1 V2 ... VN -> Bool and an equation for the induction step:

eq istepI(X1,X2,...,XN) = invI(s,X1,,...,XN) implies invI(s’,X1,...,XN) .

Then one fixes arbitrary objects v1,...,vN for the visible sorts, defines how s’
results from s by a transition t by eq s’ = t(s,...) ., and issue a reduce
command red istepI(v1,...,vN). The reduce command uses the equations to
obtain the equational normal form of an expression. If both for the initial state
and the induction step rewriting to normal form reaches the constant true, the
proof w.r.t. to transition t has succeeded. For a full proof, all defined transitions
have to be considered.
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Lemmata.

Quite often the induction step cannot be shown directly, since the induction
hypothesis is too weak. Then a lemma is needed. Let invJ be a predicate
with free variables of visible sorts E1,...,EK, and let e1,...,eK denote ei-
ther free variables of, or expressions (i.e. terms) of these sorts. One can
strengthen the induction hypothesis by augmenting invJ in state s, i.e. by
issuing red invJ(s,e1,...eK) implies istepI(v1,...,vN). One advantage
in OTS/CafeOBJ is that one can use invJ to strengthen the induction step in
the proof of invI and vice-versa.

Case Analysis.

Another proof technique is case analysis. Suppose for example that v1 is as-
sumed to be of arbitrary form. For a constructor f, we can then distinguish the
case that either v1 is constructed by f applied to some arbitrary vC, or that
this is not the case. Then the induction step is split: One declares v1 = f(vC),
and reduces red istepI(v1,...). Then one does the same again, but declares
(v1 = f(vC)) = false before reducing. Clearly all possible cases have been
exhaustively considered, since it is always true that:

(v1 = f(vC)) or (not (v1 = f(vC)))

Of course it is possible to strengthen the induction hypothesis by more than one
predicate, and to combine lemma application with case analysis.

4 Modeling PACE in CafeOBJ
The system is modeled in a way such that an unbounded number of principals
interact with each other by sending messages. Honest principals behave accord-
ing to protocol. Malicious ones can fake and forge messages. The malicious
principals are modeled as the most general intruder according to the Dolev-Yao
intruder model [10]. Moreover the following assumption are made:

1. Cryptographic primitives are sound. Random nonces are unique and can-
not be guessed, encrypted messages can only be decoded by knowing the
correct key, hashes are one-way and there are no collisions, and two mes-
sage authentication codes are the same only if generated from the same
message with the same key.

2. The intruder can glean any public information (i.e. messages, ciphers etc.)
that is sent in the network.

3. The intruder can send two kinds of messages: He can use ciphers based
on cryptographic primitives from existing messages as black boxes to send
new fake messages, or he can use eavesdropped information to generate
new messages from scratch. But, as noted above, he cannot eavesdrop in-
formation from ciphers based on cryptographic primitives without know-
ing the corresponding keys or passwords.
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4.1 An abstract version of PACE
To abstract away from implementation-dependent information and those that
cannot be captured in the Dolev-Yao model anyway, the following abstract
version of the PACE protocol is used.

Message 1 : p→ q : encπ(ns, D)
Message 2 : p→ q : ∗(na, G)
Message 3 : q → p : ∗(nb, G)
Message 4 : p→ q : mac(H(∗(na, ∗(nb, G))), ∗(nb, G), D)
Message 5 : q → p : mac(H(∗(nb, ∗(na, G))), ∗(na, G), D)

It is assumed that a run of PACE is conducted by exchanging five messages. In
the first step, a message is sent from a principal p to another one q. The message
encrypts a random nonce ns with the shared password π, with attached static
domain parameters D. Next, p maps the nonce ns from the first message with
the domain parameters to a group generator G. Then p chooses a random nonce
na, applies the operator ∗ to both na and G and sends the result ∗(na, G) to q.
In a similar manner, q chooses a random nonce nb and sends ∗(nb, G) to p. Next,
p computes the key H(∗(na, ∗(nb, G))). He then sends a message authentication
code — encoded with that key — with the received exponent ∗(nb, G) and
domain parameters D to q, in order to verify knowledge of both the received
exponent and the generated key. Principal q does the same in reverse, and
the common key H(∗(na, ∗(nb, G))) is used from now on to exchange encrypted
messages.

4.2 Basic Data Types
The following algebraic data types, i.e. visible sorts and corresponding construc-
tors are used:

• Principal denotes both honest and malicious principals in the network.

• Random denotes random nonces. Random nonces are supposed to be
unique and unguessable.

• Dompar denotes the static domain parameters of PACE. Used domain pa-
rameters are not secret and known to every principal.

• Mappoint denotes a group generator. The constructor maptopoint of
data type Mappoint takes as input a random nonce and static domain
parameters and returns a group generator. It is supposed that maptopoint
is a one-way function.

• Expo denotes an exponent of the form gx, where the group generator g is
generated by maptopoint using a random nonce and domain parameters
as input.
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• Hash denotes keys — it is supposed that hashing is the key derivation
function. The constructor hash takes as input a random nonce and an
exponent and returns a key.

• Cipher1 denotes the cipher resulting from a symmetric encryption. Its
constructor enc takes as input a random nonce and static domain param-
eters. It is implicitly assumed that a Cipher1 is encoded with the shared
password π in the following way: Given a Cipher1, every principal is able
reconstruct the static domain parameters. But only if he knows the shared
password π, he is able to decode the random nonce.

• Cipher3 denotes message authentication codes. The constructor mac takes
as input a hash, an exponent and domain parameters.

Three sorts and data types are defined for the messages in Section 4: Message 1
of Section 4 is of type Message1, messages 2 and 3 are of type Message2, and
messages 4 and 5 are of type Message3. Here, Message1 is a Cipher1 attached
with meta-information describing the creator, the (seemingly) sender, and the
receiver of a message. For example

me1(intruder,p,q,c)

denotes a Message1 where c is a Cipher1, and the message is (seemingly) sent
from principal p to q, but was actually created by the intruder, i.e. faked
and injected in the network. Similar, a Message3 is a Cipher3 attached with
corresponding meta-information. The data type Message2 is constructed by
attaching meta-information to an exponent. Moreover for the definition of the
data structures two design decisions — cf. also Section 6 — should be noticed:

4.2.1 Modeling of the shared password π.

PACE assumes a fixed shared password π known among honest principals.
Knowledge of the password is modeled by a predicate knowspi where one sets
knowspi(intruder) = false. No specific data type is introduced for decryp-
tion of messages of type 1, instead it is just distinguished between messages that
are created by an honest principal who does know π and the intruder, who does
not.

4.2.2 Equality of hashes.

The equality operator _=_ for hashes is defined as

eq (H1 = H2) = (rand(H1) = rand(H2) and expo(H1) = expo(H2))
or ( rand(H1) = rand(expo(H2))

and rand(H2) = rand(expo(H1))
and point(expo(H1)) = point(expo(H2))) .

i.e. that H(∗(na, ∗(nb, G1))) = H(∗(nc, ∗(nd, G2))) if G1 = G2, na = nc, nb =
nd, or G1 = G2, na = nd, nb = nc. This captures the equality of the keys
generated during the key exchange.
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4.3 Protocol Modeling
In order to collect all sent messages, all generated random nonces, and other
information, the following definition of a multiset on an abstract level from [19]
is reused. This definition is then later used as a parametrized module to define
multisets containing the data-types defined in the previous section.

mod* SOUP (D :: EQTRIV) principal-sort Soup {
[Elt.D < Soup]
op empty : -> Soup {constr}
op _ _ : Soup Soup -> Soup {constr assoc comm id: empty}
op _\in_ : Elt.D Soup -> Bool
var S : Soup
vars E1 E2 : Elt.D
eq E1 \in empty = false .
eq E1 \in (E2 S) = (E1 = E2) or E1 \in S .

}

The operator \in defines membership in the multiset, and a space defines inser-
tion. To collect all random nonces for example, one can define an observation
bop rands : System -> RandSoup that takes as input a state, and returns as
the observation a soup of random nonces. Given a random nonce r and a state s,
one can test membership by r \in rands(s), and — for example describing the
effects of a transition — insert r in the multiset by r rands(s). Observations
and transitions are defined as follows:

-- observations
bop network : System -> Network
bop rands : System -> RandSoup
bop hashes : System -> HashSoup
bop randsi : System -> RandSoup
bop expos : System -> ExpoSoup
bop cipher1s : System -> Cipher1Soup
bop cipher3s : System -> Cipher3Soup
-- transitions
bop sdm1 : System Principal Principal Random Dompar -> System
bop sdm2 : System Principal Principal Random Message1 -> System
bop sdm3 : System Principal Principal Message1 Message2 Message2

-> System
-- faking and forging messages based on the gleaned info
bop fkm11 : System Principal Principal Cipher1 -> System
bop fkm12 : System Principal Principal Random Dompar -> System
bop fkm21 : System Principal Principal Expo -> System
bop fkm22 : System Principal Principal Random Random Dompar -> System
bop fkm31 : System Principal Principal Cipher3 -> System
bop fkm32 : System Principal Principal Random Expo Expo Dompar -> System

Seven observers are used to collect information:

• network returns a multiset of all messages that have been sent so far.
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• rands returns a multiset containing all random nonces that have been
generated so far.

• hashes returns all keys resulting from the PACE protocol that have been
gleaned or self-generated by the intruder. The name stems from the fact
that one considers hash to be the key derivation function.

• randsi contains all random nonces gleaned or self-generated by the in-
truder.

• expos contains all exponents that have been inserted in the network and

• cipher1s and cipher3s collect all ciphertexts of messages of type 1 and
messages of type 3 (i.e. mac-tokens).

The transitions sdm1, sdm2, and sdm3 describe state transitions and their ef-
fects on observations when an honest principal sends a message of type 1, 2
or 3. Therefore the conditions on when these transitions are effective, capture
precisely the behavior of an honest principal. For example sdm1 is defined as:

eq c-sdm1(S,P,Q,R,D) = not(R \in rands(S)) .
ceq network(sdm1(S,P,Q,R,D)) = me1(P,P,Q,enc(R,D)) network(S)

if c-sdm1(S,P,Q,R,D) .

Thus an honest principal p can add a message me1(P,P,Q,enc(R,D)) in state
S — in message protocol notation p → q : encπ(R,D) — only to the network
if the nonce R is fresh. Freshness means that R is not contained in the set
of all nonces that have been generated before reaching state S. This freshness
condition is modeled by the first equation.

The transitions fkmXY describe state transitions and their effects on observa-
tions when the intruder generates messages. Here one distinguishes two cases:
1.) the intruder fakes an existing message by changing its source and destina-
tion (fkmX1) and 2.) the intruder injects a new message in the network using
information available to him (fkmX2). Therefore the effective conditions for
these transitions are usually more lax than the ones for sdmX. For example the
condition to fake a message of type 1

eq c-fkm11(S,P,Q,C1) = C1 \in cipher1s(S) .

is just that a cipher1 exists in the network. The intruder can then inject the
message me1(intruder,P,Q,C1) with arbitrary source P and destination Q. Note
that the meta information denoting the creator of the message cannot be altered
by the intruder.

An example for the second case is the condition to construct an arbitrary
new message of type 1

eq c-fkm12(S,P,Q,R,D) = (not (R \in rands(S))) or (R \in randsi(S)) .

Here the intruder can choose to either use a fresh random nonce, or one that
he has gleaned or generated in an earlier state. He then injects the message
me1(intruder,P,Q,enc(R,D)) into the network.
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5 Proving Key-Secrecy
Key secrecy is shown in the following sense: Suppose that one takes the per-
spective of an honest principal, i.e. one is either the passport or the terminal,
and one behaves according to protocol. In particular it is assumed that

1. one has either sent a Message1 with a nonce encrypted with the shared
password π and domain parameters (passport) or one has received a
Message1 from a principal who knows π and decrypted it (terminal) and

2. one constructed a generator of the group with the nonce and the domain
parameters from the above message, used the generator together with a
fresh nonce to create an exponent, and sent it to the other party and

3. one seemingly (it is unknown who created the message) received an expo-
nent back from that other party and

4. one seemingly received a MAC-token that, using ones secret nonce together
with the received exponent as a key, validates that the other party knows
ones sent exponent and the domain parameters.

Then the resulting key must never be known to the intruder. This can be almost
verbatim translated into the next main theorem:

eq inv900(S,M1,M21,M22,M3,P,Q) =
(M1 \in network(S) and M21 \in network(S)
and M22 \in network(S) and M3 \in network(S)
and sender(M3) = Q and receiver(M3) = P
and creator(M21) = P and sender(M21) = P and receiver(M21) = Q
and sender(M22) = Q and receiver(M22) = P
and (not (creator(M21) = creator(M3)))
and (not (P = Q)) and knowspi(P)
and ((sender(M1) = P and creator(M1) = P and receiver(M1) = Q) or

(sender(M1) = Q and receiver(M1) = P and knowspi(creator(M1))))
and expo(M21) = expo(cipher3(M3))
and dpar(cipher1(M1)) = dpar(point(expo(M21)))
and rand(cipher1(M1)) = rand(point(expo(M21)))
and dpar(cipher1(M1)) = dpar(cipher3(M3))
and hash(cipher3(M3)) = hash(rand(expo(M21)),expo(M22)))

implies
not (hash(cipher3(M3)) \in hashes(S)) .

5.0.1 Application of Lemmata and Case Analysis.

To prove key secrecy one needs additional invariants. Central to strengthening
the induction hypothesis for istep900 is the invariant that the assumptions of
inv900 imply that both principals have implicitly agreed upon the same gener-
ator g, which itself depends on the nonce exchanged in the first message. For
brevity suppose that assump(S,M1,M21,M22,P,Q) is a predicate that denotes
truth of the assumptions of invariant inv900 above. The invariant can then be
expressed as:
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eq inv800(S,M1,M21,M22,M3,P,Q) = assump(S,M1,M21,M22,P,Q)
implies rand(point(expo(M22))) = rand(point(expo(M21))) .

How such a lemma is used in the proof together with case analysis is illustrated,
albeit for a simpler invariant. Frequent use of the following invariant as a
lemma for others is made. It states that if one is in a state S, and a M1 of type
Message1 is in the network, then the random nonce of M1 has been used and is
thus included in the collection of all random nonces rands(S).

eq inv300(S,M1) = M1 \in network(S)
implies rand(cipher1(M1)) \in rands(S) .

inv300 is proven inductively on the number of transitions. In the case of tran-
sition fkm11 one performs case analysis w.r.t. its effective condition:

(c-fkm11(s,p10,q10,c11) = false) or (c-fkm11(s,p10,q10,c11) = true)

Here p10 and q10 denote arbitrary principals, and c11 denotes an arbitrary
cipher1. For the first case, the proof directly succeeds:

open ISTEP
ops p10 q10 : -> Principal .
op m10 : -> Message1 .
op c11 : -> Cipher1 .
eq c-fkm11(s,p10,q10,c10) = false .
eq s’ = fkm11(s,p10,q10,r10,d10) .
red istep300(m10) .

close

For the second case c-fkm11(s,p10,q10,c11) = true, one replaces the term
with its definition c11 \in cipher1s(s) = true and performs another case
analysis w.r.t. the equality m10 = me1(intruder,p10,q10,c11).

open ISTEP
ops p10 q10 : -> Principal .
ops m10 : -> Message1 .
op c11 : -> Cipher1 .
eq c11 \in cipher1s(s) = true .
eq m10 = me1(intruder,p10,q10,c11) .
eq s’ = fkm11(s,p10,q10,c11) .
***

close

If one directly tries to prove the induction step by reducing red istep300(m10)
inserted at ***, CafeOBJ outputs

rand(c11) \in rands(s) xor
me1(intruder,p10,q10,c11) \in network(s) xor ...

This indicates that if me1(intruder,p10,q10,c11) is not already included
in and thus inserted in the network as a result of the transition fkm11, then
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rand(c11) \in rands(s) must be true for the induction step to hold. There-
fore the induction hypothesis needs to be strengthened. One does so by intro-
ducing yet another invariant inv150, which states that if a cipher1 is in the
network, than its random nonce is included in the set of all used random nonces.

eq inv150(S,C1) = C1 \in cipher1s(S) implies rand(C1) \in rands(S) .

And indeed, applying inv150 as a lemma at *** by inserting

red inv150(s,c11) implies istep300(m10)

successfully finishes the induction step. Therefore it has been verified that if a
Cipher1 exists, i.e. is included in the set of collected ciphers observable in state
S in the network, then the random nonce of that cipher must be included in the
set of collected nonces observable in that state.

6 Experience and Lessons Learned
From the experience of applying OTS/CafeOBJ to a rather large real-world
example, three guidelines are formulated:

1. Refine your specification. When stuck in a proof attempt, it is worthwhile
to reconsider the specification. Take for example the definition of equality
of hashes. Initially equality was defined for two ciphers3’s C1 and C2
intuitively as

eq (C1 = C2) = (hash(C1) = hash(C2) and expo(C1) = expo(C2)
and dpar(C1) = dpar(C2)) .

This has the awkward consequence that messages can no longer uniquely
be identified: When a principal sends a message of type 3, implicitly two
messages are added to the network, one w.r.t. each case of equality of the
hash of the cipher. Then for example an invariant like

m3 \in network(s) implies cipher3(m3) \in cipher3s(s)

does not hold if we have

cipher3(m3) = mac(hash(r2,expo(r1,...),...)

and

mac(hash(r1,expo(r2,...),...) \in cipher3s(s).

This makes reasoning during the induction steps quite unintuitive and led
to defining equality of cipher3’s as syntactic equality of normals forms,
and formulating theorems accordingly when referring to multiple cipher3’s
with the same hash.
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2. Simplify your specification. Trying to specify every detail naturally gives
a proof that is most faithful to the real protocol. It however also leads
to more involved proofs and case-analysis. For example, we purposely
decided not to fully model the symmetric cipher used to encrypt the shared
password π, but rather to model knowledge of π with a predicate.

3. A deductive proof approach. It is very simple in CafeOBJ to quickly add
a lemma without proving it. Some invariants, like inv900 in the current
case, are quite involved, and it is likely that one encounters problems with
the specification during the proof, and refines or simplifies the specification
thereafter. This often also affects helper lemmata. It it thus very useful to
focus on the proof of a complex invariant, thereby using several simpler,
unproven lemmata, and only afterwards focus on the proof of the latter.

The main hindrance when conducting the proof is related to performance. Sup-
pose one is proving an invariant of the form a1 ∧ a2 . . . ∧ an =⇒ b, such as
inv900. A direct proof attempt often does not terminate, due to the amount
of branching. To get a terminating result, one can make a trivial case analysis
w.r.t. ai, e.g. distinguish the case for ¬a1, for a1 ∧ ¬a2, and so on, to finally
reach the case for a1 ∧ . . . ∧ an. Even then sometimes a proof attempt does
not terminate, so additional assumptions and corresponding cases have to be
added. Almost all cases are trivial – it is obvious that in the case with the
assumption ¬a1 the above invariant holds – but lead to a blow up of the size
of the proofs. For example, our proof score consists of 38427 lines, of which the
vast majority are for such trivial cases. Fortunately, the majority of these cases
could be generated automatically by scripts. Nevertheless, tools that tie more
directly with CafeOBJ, or come distributed with it, would be certainly helpful
for an easier work-flow and increased productivity.

All in all, 40 invariants of the formalization of PACE were proven. The
verification of all invariants together takes approximately two hours and eight
minutes on an Intel Core i7-3520M @ 2.9 Ghz.

7 Related Work
7.0.2 Security Analysis of PACE.

An inductive verification [5] of the PACE protocol has been conducted in the
verification support environment (VSE) [14]. VSE has been developed in the
1990’s by a consortium of German universities and industry to provide a tool to
meet industry needs for the development of highly trustworthy systems. Since
the proof source is not publicly published and the VSE tool and documentation
is not available for download, a comparison is difficult. An independent verifica-
tion of the proof however is important to ensure trust in the protocol, not only
for users, but also for work in international standardization bodies. A pen-and-
paper proof for security in the sense of Abdalla, Fouque and Pointcheval [1] has
been given in [2]. In [6] attempts are made to merge the pen-and-paper proof
with the VSE-proof.
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7.0.3 Formal Analysis of Security Protocols.

According to [4], the execution of the protocol, and thus the state space, is not
bounded. An approach based on model-checking seems therefore not appropri-
ate. Other than (classical) model-checking, a plethora of tools and approaches
exist to formally analyze security protocols, and the reader is referred to [3] for
a comprehensive overview. Compared to other tools, the choice of CafeOBJ
was motivated rather from the perspective of a practitioner, and not necessarily
due to other tools lacking features. In particular the OTS/CafeOBJ approach
is well documented, has a proven track record w.r.t. security protocol verifica-
tion [17, 18, 19, 20, 21, 23], the CafeOBJ platform is very stable, and modeling
of protocols is straight-forward. Also, it is not difficult to start with an abstract
specification, and then add details and extend proofs later on.

The lack of automation in OTS/CafeOBJ is a double-edged sword. On one
hand no hidden limitations exist, whereas most tools that aim for full automa-
tion make some assumptions to e.g. reduce the state space. It is sometimes not
easy to anticipate in advance which of these limitations apply for the protocol
one intends to prove. Moreover the manual approach forces oneself to recapit-
ulate on the formalization and its appropriateness of capturing the protocol in
question. On the other hand, the lack of automation is sometimes not time-
effective and somewhat tedious. Constructing tools that not only offer a high
level of automation, but also fully axiomatize Abelian group-theory to account
for more in-depth algebraic attacks is an ongoing research-topic, with several
tools, e.g. the Tamarin tool [24], which is based on multiset rewriting, or an
extended version of ProVerif [15]. Maude, another member of the OBJ family,
has been used for formal analysis of security protocols [22], and in particular
the Maude-NPA [11] tool offers a narrowing based approach for Diffie-Hellman.
Last, automation of the OTS/CafeOBJ approach itself has also recently been
increased significantly [12].

All these approaches are natural candidates when extending the proof, e.g. by
adding detail to the specification w.r.t. mapping a point and domain parameters
to a group generator, or when extending to the protocol sequence to the full
protocol sequence for extended access control

8 Conclusion and Future Work
Key secrecy has been successfully verified in CafeOBJ. This not only facilitates
trust in the PACE protocol, but also represents one more case-study that shows
that the OTS/CafeOBJ approach scales well beyond toy-examples like NS(L)PK
to real-world scenarios. Also, the PACE proof can serve as a guide on how
to model a DH-key exchange in CafeOBJ. Key-Secrecy however, is only one
important property of PACE. Future directions include to extend the proof
to mutual authentication, perfect forward secrecy, and the full EAC2 protocol
stack, possibly with the help of the automated tools mentioned in Section 7.
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